
Objects

• Declaration:

• String title;
• title (object variable) of type String(Class)

• title is just reference (holds the address)

• No object is created with this declaration

• Creation/Instantiation:

• title = new String (“Cin Ali");
• title (object) is an instance of String (class)

• BTW, only for strings, title=“Cin Ali” was enough

• Call Method : Dot operator

• count = title.length();

References

• A primitive variable contains the value itself, but an object variable
contains the address of the object

• An object reference can be thought of as a pointer to the location of
the object

"Steve Jobs"name1

num1 38

Assignment Revisited

• The act of assignment takes a copy of a value and stores it in a
variable

• For primitive types:

num1 38

num2 96
Before:

num2 = num1;

num1 38

num2 38
After:

Reference Assignment

• For object references, assignment copies the address:

• Changing an object through one reference changes it for all

name2 = name1;

name1

name2
Before:

"Steve Jobs"

"Steve Wozniak"

name1

name2
After:

"Steve Jobs"

Garbage Collection

• When an object no longer has any valid references to it, it can no
longer be accessed

• Java performs automatic garbage collection periodically, returning an
object's memory to the system for future use

• In other languages, the programmer is responsible for performing
garbage collection

Class Libraries

• Predefined classes - libraries

• Java standard class library is part of any Java development
environment
• Various classes we've already used (System, Scanner, String) are part of the

Java standard class library

• It has packages

Package

java.lang

java.applet

java.awt

javax.swing

java.net

java.util

javax.xml.parsers

Purpose

General support (automatically imported)

Creating applets for the web

Graphics and graphical user interfaces

Additional graphics capabilities

Network communication

Utilities

XML document processing

The import Declaration

• To use a class from a package, you could use its fully qualified name

• java.util.Scanner

• Or import the class, and then use just the class name

• import java.util.Scanner;

• To import all classes in a particular package, use the * wildcard
character

• import java.util.*;

The import Declaration

• java.lang package (e.g., System, String classes) are imported
automatically into all programs.
• No need to say: import java.lang.*;

• The Scanner class is in java.util, and therefore must be imported

• Random class in java.util

• Math class in java.lang

Classes and Objects

• Die class - the blueprint for a die object
• We can then instantiate many die objects

• State: which face is showing
• private int faceValue

• A behavior: it can be rolled
• roll method that assigns a random value to faceValue

• Die constructor sets faceValue of each new die object to 1

• Other methods (behaviors) that might be useful

Data Scope

• The scope of data is the area in a program in which that data can be
referenced (used)

• Data declared at the class level can be referenced by all methods in
that class

• Data declared within a method (local data) can be used only in that
method

• faceValue is instance data
• each instance (object) has its own version

Instance Data

• A class declares the type of the data, but it does not reserve any
memory space for it

• Every time a Die object is created, a new faceValue variable is created
as well

• The objects of a class share the method definitions, but each object
has its own data space

• That's the only way two objects can have different states

Instance Data

• We can depict the two Die objects from the RollingDice program as
follows:

die1 5faceValue

die2 2faceValue

Each object maintains its own faceValue

variable, and thus its own state

Encapsulation

• We can take one of two views of an object:
• internal - the details of the variables and methods of the class that defines it

• external - the services that an object provides and how the object interacts
with the rest of the system

• From the external view, an object is an encapsulated entity, providing
a set of specific services

• These services define the interface to the object

Encapsulation

• One object (called the client) may use another object for the services
it provides

• The client of an object may request its services (call its methods), but
it should not have to be aware of how those services are
accomplished

• Any changes to the object's state (its variables) should be made by
that object's methods

• We should make it difficult, if not impossible, for a client to access an
object’s variables directly

• That is, an object should be self-governing

Encapsulation

• An encapsulated object can be thought of as a black box -- its inner
workings are hidden from the client

• The client invokes the interface methods of the object, which
manages the instance data

Methods

Data

Client

Visibility Modifiers for Encapsulation

• public

• protected

• private
• can be referenced only within that class

• public variables violate encapsulation
• clients modify the values directly!!

• Instance variables should not be declared public

• Service methods are public (for clients)

• Support methods are not public (for service methods)

Accessors and Mutators

• Because instance data is private, a class usually provides services to
access and modify data values

• Accessor method returns the current value of a variable (getX, where
X is the name of the value)

• Mutator method changes the value of a variable (setX)

Method Body

• The method header is followed by the method body

char calc (int num1, int num2, String message)

{

int sum = num1 + num2;

char result = message.charAt (sum);

return result;

}

The return expression
must be consistent with
the return type

sum and result

are local data

They are created
each time the
method is called, and
are destroyed when
it finishes executing

Parameters

• When a method is called, the actual parameters in the invocation are
copied into the formal parameters in the method header

char calc (int num1, int num2, String message)

{

int sum = num1 + num2;

char result = message.charAt (sum);

return result;

}

ch = obj.calc (3, count, "Hello");

Local Data

• Local variables inside a method are destroyed when it finishes

• Instance variables, declared at the class level, exists as long as the
object exists

Constructors Revisited

• Note that a constructor has no return type specified in the method
header, not even void

• A common error is to put a return type on a constructor, which
makes it a “regular” method that happens to have the same name as
the class

• The programmer does not have to define a constructor for a class

• Each class has a default constructor that accepts no parameters

Bank Account Example

• Let’s look at another example that demonstrates the implementation
details of classes and methods

• We’ll represent a bank account by a class named Account

• It’s state can include the account number, the current balance, and
the name of the owner

• An account’s behaviors (or services) include deposits and
withdrawals, and adding interest

Bank Account Example

acct1 72354acctNumber

102.56balance

name “Ted Murphy”

acct2 69713acctNumber

40.00balance

name “Jane Smith”

